摘要

为准确预测泥石流危险度,提出了基于粗糙集理论(rough set,RS)的粒子群算法(particle swarm optimization,PSD)优化支持向量机(support vector machine,SVM)模型。首先离散化泥石流样本数据形成初始决策表,利用粗糙集理论对10个泥石流危险度影响指标进行属性约简,将约简后的泥石流指标数据归一化处理作为支持向量机的学习样本,通过粒子群算法寻优获得最佳支持向量机模型参数,最终建立基于粗糙集的泥石流危险度预测的优化支持向量机模型。并将构建的RS-PSOSVM模型用于对测试样本的预测。结果表明:在相同训练样本的条件下,RS-PSO-SVM模型、PSO-SVM模型及RS-PSO-BP模型三者的预测准确率分别为87. 5%、87. 5%、75%,说明RS-PSO-SVM模型和PSO-SVM模型具有比RS-PSO-BP模型更高的精度。此外,尽管RS-PSO-SVM模型和PSO-SVM模型具有相同的预测精度,但是由于进行了属性约简,RS-PSO-SVM模型可以有效提高运行效率,降低模型复杂度。

  • 单位
    河北地质大学; 河北省地震局