摘要
本发明提出了一种基于多分类器集成和并行特征学习的滚动轴承智能故障诊断方法,旨在提高模型的分类精度,实现步骤为:获取训练样本集和测试样本集;建立多个堆栈自编码器模型,以训练样本集为输入对堆栈式自编码器模型进行并行训练,提取训练样本集的多个特征;基于softmax模型对提取的特征进行特征评价,根据相应的阈值和评价指标值筛选特征构成特征子集;根据特征子集建立基于softmax模型的多个分类器,以特征子集为输入获取每个分类器的分类精度,根据阈值重新选择多个分类器构造集成多分类器模型,通过多数投票法获得集成多分类器模型预测标签,将预测标签与滚动轴承故障类型进行映射,实现滚动轴承的智能故障诊断。
- 单位