摘要

高精度GNSS速度场是研究地壳垂向运动及板块运动的基础,能够为冰川均衡调整(Glacial Isostatic Adjustment,GIA)的建模提供外部检核和新的约束.共性误差(Common Mode Error,CME)是区域连续GNSS时间序列中存在的一种与时空相关的主要误差源,通过空间滤波可有效的降低共性误差的影响,提高坐标时间序列的精度.目前广泛采用的主分量分析法(Principal Component Analysis,PCA),基于二阶统计量(方差和协方差)进行处理,没有充分利用CME高阶统计信息.而独立分量分析ICA(Independent Component Analysis),引入高阶统计量,能够分离出统计独立的非高斯信号.以南极半岛地区的15个GNSS站点为例,由于某些站点存在强烈的局部效应,因此引入了因子分析法首先对异常站进行剔除,然后对比分析了PCA和ICA方法在南极半岛地区区域滤波结果.结果显示,ICA的滤波效果要优于PCA,ICA滤波前后E、N、U三个方向RMS平均降低44.69%、26.94%、34.87%,不确定度分别降低37.43%,44.58%,55.86%,有效的降低了GNSS残差序列的发散性和速度的不确定度.

  • 单位
    武汉大学测绘遥感信息工程国家重点实验室; 武汉大学