摘要
为减少大田环境下光照不足对小麦图像分割的影响,以及提升小麦图像中偏黄叶片的提取效果,提出了将白平衡调整、局部同态滤波预处理和基于概率潜在语义分析(PLSA)模型的颜色命名算法相结合用于小麦图像分割的方法。首先,对大田采集的小麦图像进行白平衡调整,得到准确无偏色的图像;然后对光照不足的图像在HSI彩色模型下对亮度分量I进行局部同态滤波处理,以减少光照不足对图像的影响;最后在RGB彩色模型下基于PLSA模型构建的颜色名RGB值字典,提取图像中绿色和黄色像素点对应区域作为目标区域。结果表明,经白平衡调整后F1值提高1.61个百分点;光照不足图像经局部同态滤波处理后F1值提高12.43个百分点,分割效果明显提升;所提方法对绿色、叶片偏黄及光照不足的小麦图像分割的F1值分别为96.39%、97.29%和96.22%,均达到了较好的分割效果;所提方法与K-means聚类算法相比,虽点状噪音和细小孔洞相对较多,但在分割叶片偏黄小麦上F1值提高4.42%,整体分割效果较好,且稳定性强。
-
单位河南省农业科学院农业经济与信息研究所; 北京市科学技术研究院