针对工业制品缺陷分类存在的样本图像少、分类准确性不足和模型训练耗时长等问题,提出了一种基于深度森林的人机协同分类模型.该模型首先通过深度森林对样本图像进行初步识别,经多粒度扫描模块和级联森林模块提取特征,得到初始预测结果并分离出识别困难的样本图像;然后采用人机协同的策略,采用人工方式随机标注部分识别困难的样本,再利用K近邻算法对剩余识别困难的样本进行再分类.通过在公开数据集以及生产线实际采集的真实数据上的实验结果表明,改进的分类模型在工业制品表面缺陷数据集上的性能优于基线算法.