摘要
为减少进化代数,提高路径覆盖成功率,提出了多邻域Kalman滤波PSO测试数据生成方法.在该方法中将粒子固定划分到不同邻域中,各邻域内指定一个粒子向全局最优粒子学习,其余各粒子向所在邻域中最优粒子学习,而全局最优粒子利用无速度项的简化PSO进化.在此过程中,除全局最优粒子外的各粒子利用Kalman滤波方程更新粒子的位置.实验表明,相较于基本PSO和其他PSO方法,即使是覆盖困难的路径,本文方法也具有进化代数少、路径覆盖成功率高及性能稳定的特点.
- 单位
为减少进化代数,提高路径覆盖成功率,提出了多邻域Kalman滤波PSO测试数据生成方法.在该方法中将粒子固定划分到不同邻域中,各邻域内指定一个粒子向全局最优粒子学习,其余各粒子向所在邻域中最优粒子学习,而全局最优粒子利用无速度项的简化PSO进化.在此过程中,除全局最优粒子外的各粒子利用Kalman滤波方程更新粒子的位置.实验表明,相较于基本PSO和其他PSO方法,即使是覆盖困难的路径,本文方法也具有进化代数少、路径覆盖成功率高及性能稳定的特点.