摘要

传统基于力学分析软件的结构设计方法存在效率低下、依靠专家经验等局限性,采用智能算法能实现高效的结构自动优化设计。然而,由于随机搜索特征,优化结果和收敛性高度依赖于算法的参数设置,需要通过试算来确定其合理取值,该方法会造成优化效率低、计算量大等问题。引入多种群协作和信息共享机制来改善此类问题,并研究其在结构优化设计中的适用性。利用MSC.Marc软件建立钢框架结构有限元模型,采用底部剪力法将地震作用等效为水平荷载施加到结构上,搭建有限元软件与智能算法的自动优化过程,以结构的总体材料用量最低为目标,考虑了层间位移角、应力比、构件稳定性和宽厚比等多种约束条件,以遗传算法为基础,通过适应度尺度变换、基于方向的交叉算子、非均匀变异算子、自适应概率、精英保留策略、重复项替代机制、基于约束的策略对其进行改进,引入多种群思想,对比多种算法优化结果的差异。研究结果表明:基于多种群的遗传算法能有效改善优化结果对算法参数的依赖性,提高结构优化设计的效率。