摘要

MOEA/D具有良好的收敛性、均匀的分布性、求解效率高等优点,普遍应用于求解多目标优化问题.然而对于Pareto前端复杂的多目标优化问题,预先设定均匀的权重向量并不能够维持Pareto最优解集的良好分布性.本文,首先分析均匀分布的权重向量、均匀分布的搜索方向二者与均匀分布的解集之间的关系,提出一种新的权重向量设置方式;其次基于进化过程中解集的分布,提出线性插入搜索方向策略,并将其转换为对应的权重向量,同时在MOEA/D中周期性应用该策略调整搜索方向,获取分布均匀的解集;最后将该算法在WFG系列测试问题上进行性能测试,并采用世代距离指标(GD)、Spacing指标(S)、超体积指标(HV)对算法收敛性和多样性进行对比分析,实验结果表明,与原始的MOEA/D、使用均匀分布的搜索方向MOEA/D、使用预处理的M OEA/D、M OEA/D-DU相比,改进的算法求出解集的多样性极大提高,收敛性明显增强,解集的整体质量显著提高.