摘要

针对滚动轴承信号易受噪声干扰和智能诊断模型在不同工况下自适应性差的问题,提出了一种多尺度注意力卷积神经网络(MSACNN)模型.首先,将一维时间序列转化为二维图像作为模型的输入,在特征提取过程中,利用多尺度卷积结构拓宽网络的宽度并实现不同维度敏感特征的提取;然后,通过注意力机制对数据不同维度的特征赋予不同的权重,使模型更关注于最具类别区分度的区域,从而提高模型的特征学习能力;最后,通过全连接层的多分类函数实现滚动轴承的故障诊断.实验结果表明:与其他方法相比,该模型不仅能在同负载各测试集上达到很高的准确率,而且在变负载工况下具有较强的迁移泛化能力和鲁棒性;该模型在强噪声环境下也具有良好的诊断性能,较其他方法抗噪性优势明显.此外,通过可视化方法分析了该模型的特征学习过程和故障分类机理.