摘要

图像缺损修复研究旨在通过计算机自动修复图像中的缺损内容。近年来,深度神经网络技术的出现有效促进了相关研究的发展。本文针对该类研究进行了系统梳理和综合介绍。依据网络架构类型,具体将方法分为五类:Context-Encoder类、U-Net类、CGAN类、DCGAN类以及StackGAN类。我们具体分析了每类方法的思路、特点、优势和缺陷,并基于系统性实验,在公开大规模数据集上客观对比评价每一类方法的精度和性能。最后对目前相关工作中存在的问题和挑战进行了阐述和介绍。