摘要

针对文本匹配过程中存在语义损失和句子对间信息交互不充分的问题,提出基于密集连接网络和多维特征融合的文本匹配方法.模型的编码端使用BiLSTM网络对句子进行编码,获取句子的上下文语义特征;密集连接网络将最底层的词嵌入特征和最高层的密集模块特征连接,丰富句子的语义特征;基于注意力机制单词级的信息交互,将句子对间的相似性特征、差异性特征和关键性特征进行多维特征融合,使模型捕获更多句子对间的语义关系.在4个基准数据集上对模型进行评估,与其他强基准模型相比,所提模型的文本匹配准确率显著提升,准确率分别提高0.3%、0.3%、0.6%和1.81%.在释义识别Quora数据集上的有效性验证实验结果表明,所提方法对句子语义相似度具有精准的匹配效果.