基于改进Faster R-CNN的钢板表面缺陷检测

作者:李玉; 汤勃; 孙伟; 林中康; 李锦达
来源:组合机床与自动化加工技术, 2022, (05): 113-115+119.
DOI:10.13462/j.cnki.mmtamt.2022.05.027

摘要

针对钢板表面缺陷检测难的问题,使用改进的Faster R-CNN模型对两种带钢的8类表面缺陷进行检测。首先,对数据进行增强,获得钢板表面缺陷数据集;其次,使用VGG16、MobileNet-V2、ResNet-50三种不同特征提取网络在数据集上对模型进行训练、测试,对比模型精度,确定具体任务下的最优特征提取网络;然后,使用K-means算法对缺陷数据进行聚类分析,定制出更适合钢板表面缺陷的锚框方案;最后,融入特征金字塔网络,进一步提高模型性能。实验结果表明,改进后的模型对低对比度微小缺陷的检测能力有了明显的提高,mAP值达到98.44%比原始的Faster R-CNN模型提高了13.85%。

全文