摘要

针对结肠息肉的形状、大小、颜色和纹理多样性,息肉与背景相似及结肠镜图像的对比度低等影响分割效果的问题,提出了一种结合HarDNet和反向注意力的U型结构的结肠息肉图像分割网络。所提模型以U型的编码器解码器结构为基础架构:首先,编码器采用HarDNet68为主干网络提取特征,以提升推理速度和计算效率;其次,解码器采用3个反向注意力模块进行边界特征的融合和细化;最后,在编码器和解码器之间通过感受野模块实现多尺度信息的融合,为解码器提供更为详细的边缘信息。该模型编码器和解码器之间的迭代交互机制能够有效地校正预测结果中矛盾冲突的区域,达到提高分割精度的目的。实验结果表明,与现有的方法相比,所提方法在提高分割精度的同时,具有良好的实时性和泛化能力。研究成果可以为结肠息肉的早期筛查提供可靠的依据。