LSTM-WBLS模型在日降水量预测中的应用

作者:韩莹; 管健; 曹允重; 罗嘉*
来源:南京信息工程大学学报(自然科学版), 2023, 15(02): 180-186.
DOI:10.13878/j.cnki.jnuist.2023.02.006

摘要

基于长短时记忆网络(Long Short-Term Memory, LSTM)降水量预测模型存在过拟合、时滞现象,而宽度学习系统(Broad Learning System, BLS)无需多次迭代的特点有助于解决LSTM的上述缺点.加权宽度学习系统(Weighted Broad Learning System, WBLS)通过在BLS中引入加权惩罚因子约束分配样本权重,降低噪声和异常值对降水量预测精度的影响.本文提出一种LSTM-WBLS日降水量预测模型,选取湖北省巴东站日降水量进行实证研究,并考虑气压、气温、湿度、风速和日照等因素对降水量的影响.实验结果表明,与现有的预测模型相比,LSTM-BLS模型在RMSE、MAE和R2等评价指标上均有显著提升.不同时间步长下,本文模型预测精度均优于现有模型,验证了其稳定性.与LSTM相比,WBLS直接计算权重的特点使得LSTM-WBLS的运算效率并未降低.