摘要
癌症是造成人类死亡的一个重要原因。抗癌肽(ACPs)是一系列由10~60个氨基酸组成的短肽,可以抑制肿瘤细胞的增殖或迁移,不易引起耐药性。将肽序列作为输入,搭建基于Transformer网络的抗癌肽模型并预测,模型自动将序列信息通过字符嵌入的方法映射为特征向量,实现了使用Transformer网络模型来自动识别抗癌肽和非抗癌肽。五倍交叉验证实验结果表明,该模型在数据集ACP240和ACP740上的准确率分别达到87.92%和83.75%。该模型能够有效地预测抗癌肽。
-
单位江苏理工学院