摘要

针对传统方法对实际环境中车辆检测精度不高的问题,提出基于深度学习中R-FCN模型进行车辆检测的方法。基于全卷积网络,结合多尺度训练使模型能够学习到不同尺寸车辆的抽象特征,在训练过程中引入可变形网络提高模型对目标变换的自适应能力,使用软化非极大值抑制的方法减少复杂环境中目标的漏检率。利用Udacity数据集进行训练和测试,实验结果表明,提出方法与R-FCN模型相比,检测的平均准确度提高了4.3%,对实际场景下的车辆有着良好的检测效果,网络具有一定的鲁棒性。

全文