摘要

针对道路图像语义分割效果不够精确的问题,提出一种基于深度学习的道路图像语义分割的改进方法,并与传统的全卷积神经网络模型(FCN)相结合实现道路图像语义分割.先验概率层利用道路图像的先验知识,在所有道路图像训练标签的基础上构建二维数组表示像素点的分类概率,并将它结合传统全卷积神经网络模型对道路图像进行语义分割.实验结果表明:提出的先验概率层的后处理算法能够优化传统全卷积神经网络模型的分割效果,使像素精确度由88.8%提高到91.3%,平均像素精确度由82.9%提高到85.7%,平均交并比值由72.5%提高到77.9%.