为了设计性能更优的支持向量机(SVM)分类模型,对影响其分类性能的参数和样本特征子集进行优化选择,对支持向量机理论和万有引力搜索算法(GSA)进行了研究,提出了一种基于二进制万有引力搜索算法(BGSA)的支持向量机分类模型构建方法,能够对影响支持向量机分类性能的相关参数及有效样本特征子集同时进行优化选择,获得最优组合解,并通过实验对其有效性进行了对比分析和验证。实验结果表明,所提出的BGSA-SVM分类模型能够有效提高支持向量机的分类性能,可进一步推广到工程实际中应用。