摘要
针对现有金融时序数据预测方法在构造金融特征图像的过程中因忽视市场环境变化导致的数据密度分布差异问题,提出一种基于滑动窗口标准化的金融数据预处理方法。所提方法将滑动窗口截取的数据使用独立的标准化转换为金融特征图像,使得依赖价格特征进行训练的卷积神经网络(CNN)模型能够学习到正确的映射关系;同时,针对金融特征图像的特征表达问题,为更好地捕捉其动态变化特征,将注意力机制引入CNN中,进而构建出一种注意力CNN金融时序数据预测模型。对标普500指数未来1天涨跌进行预测的准确率和F1分数分别为61%和0.739 7,模拟交易实验投资回报率为23.04%,优于买入并持有策略。此外,消融实验结果也证明了预处理方法、注意力模块引入的有效性。
- 单位