摘要

为了提高金融序列的预测精度,提出了一种基于经验模态分解(EMD)和奇异谱分析(SSA)的EMD-SSALSTM-SVR组合预测模型。该模型结合了EMD分解和SSA分解各自的优点,将原始金融序列分解为具有不同时间尺度的分量,充分发挥LSTM模型处理长期依赖序列的优势以及SVR模型对非线性序列的泛化能力对各个分量进行预测,集成得到金融序列的预测值。实验表明,与现有的EMD-LSTM、EMD-SVR、SSA-SVR和SSA-LSTM等基于EMD和SSA的预测模型相比,EMD-SSA-LSTM-SVR模型具有更高的预测精度。