摘要
针对传统模糊C-均值(FCM)聚类算法计算复杂度高、无法自动确定聚类数目的问题,提出了一种快速自动FCM聚类彩色图像分割算法。首先通过改进的简单线性迭代聚类(SLIC)超像素算法预分割图像,将传统基于单个像素的聚类转化为基于超像素区域的聚类,降低FCM计算复杂度;其次利用改进的密度峰值算法自动确定聚类数目,提高算法灵活性;最后,对超像素图像进行基于直方图的FCM聚类,完成图像分割。为验证所提算法的有效性,采用BSDS500、AID和MSRC公共数据库作为实验数据集,并与其他4种FCM分割算法进行了比较。实验结果表明,所提分割算法在分割精准度、模糊分割系数、模糊分割熵和视觉效果等方面均优于其他几种比较算法。
- 单位