摘要
知识图谱技术可以有效实现故障信息的结构化存储,弥补传统故障诊断方法缺乏结构化管理故障信息能力的不足。但是实际工况下故障样本数量稀少,传统知识图谱技术难以在小样本情况下完成图谱构建。针对上述问题,提出一种基于元学习的设备故障知识图谱构建及推理方法。该方法首先提取故障规则链和信号特征构建设备故障信息知识图谱;其次提出基于元学习的故障链接预测算法,通过同一故障簇邻域负样本生成策略,使知识图谱具有在小样本情况下进行故障诊断的能力;最后,分别采用通识领域NELL-One数据集和实际设备故障数据集进行实验,验证了算法的故障诊断能力和查询相似故障的能力。
- 单位