摘要

针对二维动态场景下的移动机器人路径规划问题,提出了一种新颖的路径规划方法——连续动态运动基元(continuous dynamic movement primitives, CDMPs).该方法将传统的单一动态运动基元推广到连续动态运动基元,通过对演示运动轨迹的学习,获得各运动基元的权重序列,利用相位变量的更新,实现对未知动态目标的追踪.该方法克服了移动机器人对环境模型的依赖,解决了动态场景下追踪运动目标和躲避动态障碍物的路径规划问题.最后通过一系列仿真实验,验证了算法的可行性.仿真实验结果表明,对于动态场景下移动机器人路径规划问题, CDMPs算法比传统的DMPs方法在连续性能和规划效率上具有更好的表现.