摘要
移动互联网和智能手机的普及大大方便了人们的生活,并由此产生了大量的轨迹数据.通过对发布的轨迹数据进行分析,能够有效提高基于位置服务的质量,进而推动智慧城市相关应用的发展,例如智能交通管理、基础设计规划以及道路拥塞预警与检测.然而,由于轨迹数据中包含用户的敏感信息,直接发布原始的轨迹数据会对个人隐私造成严重威胁.差分隐私作为一种具备严格形式化定义、强隐私性保证的安全机制,已经被广泛应用于轨迹数据的发布中.但是,现有的方法假定用户具有相同的隐私偏好,并且为所有用户提供相同级别的隐私保护,这会导致对某些用户提供的隐私保护级别不足,而某些用户则获得过多的隐私保护.为满足不同用户的隐私保护需求,提高数据可用性,本文假设用户具备不同的隐私需求,提出了一种面向轨迹数据的个性化差分隐私发布机制.该机制利用Hilbert曲线提取轨迹数据在各个时刻的分布特征,生成位置聚簇,使用抽样机制和指数机制选择各个位置聚簇的代表元,进而利用位置代表元对原始轨迹数据进行泛化,从而生成待发布轨迹数据.在真实轨迹数据集上的实验表明,与基于标准差分隐私的方法相比,本文提出的机制在隐私保护和数据可用性之间提供了更好的平衡.
- 单位