摘要

针对实际交通场景下的车辆图像分割方法存在模糊、效果差的问题,本文以UNet神经网络模型为基础,提出了一种融合多尺度模块和空间注意力机制的MSSA-UNet模型。在编解码阶段,采用空洞卷积构建多尺度模块,改善卷积层感受野大小受限的同时输出包含多尺度的特征信息。在上采样前,引入空间注意力机制来弥补采样过程中的局部信息丢失问题,提高特征还原能力。结合交叉熵损失与Dice损失,优化网络学习和训练过程,提高模型的分割精度。实验结果表明,本文提出的MSSA-UNet模型对于车辆图像分割任务在IoU评价指标达到83.48%,较改进前准确度提升了2.28%,模型预测值和真实值更接近,分割效果更好,有效提升了模型的分割性能。

全文