针对振动声调制特征信号被强噪声淹没无法有效提取的问题,提出一种基于经验模态分解与奇异值分解相结合的振动声调制信号分析方法。先对振动声调制信号进行经验模态分解,选取imf分量,然后将imf分量进行奇异值分解降噪,得到非线性特征信号,最后对特征信号进行Kolmogorov熵计算。将该算法应用于实际碳纤维复合材料的检测,利用Kolmogorov熵进行损伤评估。该方法成功提取了特征信号,实现了损伤诊断和定量评估,而且具有较强的自适应能力。