摘要

命名实体识别指识别文本中具有特定意义的实体,是自然语言处理诸多下游任务的重要基石。在命名实体识别任务中,协同图网络(CGN)模型通过引入多个图注意力网络获得较强的知识整合能力及较高的处理速度,但CGN模型在嵌入层中没有充分利用词边界信息,且采用的传统静态图注意力网络影响了图注意力的表达能力。在对CGN模型的图注意力网络进行改进的基础上,提出一种中文命名实体识别新模型,在嵌入层融入词语的分词信息,以生成包含词边界信息的字向量,从而充分利用词边界信息。通过在编码层使用BiLSTM模型获取文本的上下文信息,采用改进后的图注意力网络提取文本特征,并通过优化传统图注意力网络中相关系数的计算方式,增强模型的特征提取能力。最后,利用条件随机场对文本进行解码,从而实现对实体的标注。实验结果表明,该模型相比CGN模型在MSRA、OntoNotes4.0、Weibo数据集上的F1值分别提升了0.67%、3.16%、0.16%,验证了其在中文命名实体识别任务上的有效性。