摘要
针对群养饲喂模式下猪群易因聚集遮挡、猪体粘连而影响图像分割的问题,本文对无锚框单阶段实例分割Blend Mask算法进行了相应的改进,提出了一种基于卷积神经网络的群猪图像实例分割算法。首先,将原主干网络由ResNet-101升级为ResNext-101,在网络不加深不加宽的情况下,提升模型准确率的同时还减少超参数的数量;然后,在检测模块中引入可变形卷积来提高原网络对猪身粘连区域的表征能力;最后对损失函数进行优化,以提升分割精度。实验数据采集自广州广垦、湖南唐人神两个猪场,在此数据集上进行模型训练和测试,对改进前后的Blend Mask算法进行测试对比,改进后的Blend Mask算法的分割准确率在同一数据集上均有所提升,由于群猪聚集遮挡问题导致的误检、漏检问题也有所改进。
- 单位