摘要
建立有效的目标表观模型是视觉跟踪算法的关键。该文采用中层次视觉线索(超像素)对目标表观进行建模,提出一种实时超像素跟踪(RSPT)算法。算法采用K近邻(KNN)方法从超像素特征集合中学习目标的判别式表观模型;在后续帧中,根据学习到的表观模型计算目标-背景置信图,然后巧妙地采用积分图方法估计目标状态,实现了高速的全局最优估计;最后设计了目标表观模型的在线更新策略,引入遮挡因子对遮挡进行判断。在配置i5处理器的电脑中,所提RSPT算法使用未经优化的Matlab代码以19帧/s的速度实时运行。对若干序列的对比实验表明,所提算法能够在多种复杂环境下稳定跟踪目标,具有良好的鲁棒性。
-
单位中国人民解放军陆军工程大学