摘要

开展干旱预测是有效应对干旱风险的前提基础,本研究利用1951—2017年河南省郑州气象站点逐日降水量数据计算多尺度标准化降水指数(SPI),并建立了SPI序列自回归移动平均模型(ARIMA)和自回归移动平均与支持向量机回归组合模型(ARIMA-SVR),对模型参数进行率定和验证后,利用所建立的模型对河南省郑州气象站点多尺度SPI值进行预测。借助均方根误差(RMSE)、平均绝对百分比误差(MAPE)对回归预测模型的有效性进行判定。结果表明:ARIMA-SVR组合模型在SPI1(1个月)和SPI12(12个月)的RMSE值分别为80.05和0.74,均低于ARIMA模型的92.25和1.24,说明ARIMA-SVR组合模型与单一的ARIMA模型对SPI的预测精度都与该指数的时间尺度长短有关,都随时间尺度的增加而逐渐提高;SPI12的两种模型预测精度均高于SPI1、SPI3(3个月)和SPI6(6个月)的预测精度。用实测数据与模型的预测数据相比较说明ARIMA-SVR组合模型相比于单一ARIMA模型预测精度更高,且能够很好拟合不同时间尺度的标准化降水指数。