摘要
针对目前铁路道岔故障率高,维护质量低等问题,以S700K型转辙机功率曲线为研究对象,提出一种补偿距离评估技术(Compensation Distance Evaluation Technique, CDET)结合改进的粒子群算法(Modified Particle Swarm Optimization, MPSO)优化支持向量机(Support Vector Machine, SVM)的道岔智能故障诊断方法.首先,通过分析S700K转辙机动作机理,将功率曲线分成启动、解锁、转换、锁闭、构通表示5个阶段,分别提取各阶段道岔功率曲线相应的特征集;然后,利用补偿距离评估技术对提取的特征候选集进行降维,选出敏感特征;最后,引入扰动项和动量项对粒子群算法进行改进并优化SVM相关参数,作为分类器对道岔故障进行预测,并与基于PSO-SVM,SVM等分类算法进行比较.仿真验证表明:该方法诊断正确率达到97%以上,能有效地识别道岔故障类型.
- 单位