摘要

用非结构网格有限体积法求解自然对流换热时,传统的对流项离散格式难以兼顾数值精度与计算效率,我们发展了一种耦合高精度格式的延迟修正方法,用于对流项的离散.高Re数下方腔驱动流数值计算验证了该方法具有较高的计算精度和较好的稳定性.Boussinesq流体的自然对流换热数值模拟,表明该方法能有效克服高Ra数时数值计算发散,可准确捕捉自然对流换热问题中不同偏心率下的等温线和流线分布特征.

全文