摘要
宽度神经网络(broad neural networks, BNN)被认为是继深度神经网络之后的一种主流机器学习算法,然而BNN没有考虑数据不确定性及局部几何结构信息。为此,提出概率偏最小二乘(probabilistic partial least square, PPLS)与稀疏鉴别流形正则化的双模型协同宽度神经网络建模方法。该方法首先使用PPLS对BNN输入特征以及增强特征构成的高维数据提取低维隐藏变量,消除数据不确定信息以及冗余特征;基于稀疏表示方法自适应构建样本局部与非局部近邻矩阵,并结合PPLS模型投影矩阵,提出一种新颖的融合模型信息迁移、鉴别流形正则化以及l2,p-范数约束的BNN建模方法,有效增强BNN模型的鲁棒性、建模精度,同时消除数据的随机不确定性;最后给出迭代优化求解方法获取模型最优参数。在不同规模数据集、不同光照和角度图像数据集对所提算法进行仿真验证,结果表明该算法对不同规模数据集均能取得满意的效果;对图像数据集仿真结果表明其具有很强的鲁棒性和泛化性能。
- 单位