基于LSTM网络的变压器油中溶解气体浓度预测

作者:王科; 苟家萁; 彭晶; 刘可真*; 田小航; 盛戈皞
来源:电子测量技术, 2020, 43(04): 81-87.
DOI:10.19651/j.cnki.emt.1903437

摘要

电力变压器作为电力系统中传输和变换电能的主要设备,其安全稳定性运行在电网中起着重要的作用。对变压器油中溶解气体浓度变化的趋势进行预测,可为其运行状态评估提供重要依据,鉴于此提出了一种基于长短期记忆网络(LSTM)的变压器油中溶解气体浓度预测模型。该模型克服了传统神经网络在序列预测方面存在的"梯度消散"问题,利用油中溶解气体的序列数据对长短期记忆网络进行训练,得到最优的预测模型参数。以变压器油中溶解的7种特征气体浓度为输入,以待预测气体的浓度为输出。通过算例分析表明,相比于传统的机器学习预测方法支持向量机(support vector machine, SVM)与反向传播神经网络(back propagation neural network,BPNN),本文所提的LSTM预测模型更能准确地预测油中溶解气体的浓度。

全文