摘要

为减小径流时间序列的非线性及非平稳性带来的预测误差,提高多种预见期下的月径流预测精度,将变模态分解(VMD)和长短期记忆神经网络(LSTM)模型相结合,建立了VMD-LSTM组合预测模型,并将大气环流因子作为模型输入的增加项,预测未来1~3个月的月径流。将模型应用于黄河流域上游唐乃亥、民和、享堂、红旗及折桥站的月径流预测以验证模型的适用性,并与VMD-BP(BP神经网络)、VMD-SVR(支持向量回归)及单一LSTM模型相比较。结果表明:VMD-LSTM组合模型的预测误差最小、精度最高,相比单一LSTM模型,其纳什效率系数(NSE)约从0.6~0.7提高到0.9以上;融合大气环流因子后VMD-LSTM模型预测精度进一步提高,NSE保持在0.91~0.96之间;随着预见期的增长,VMD-LSTM模型预测精度衰减较VMD-BP和VMD-SVR模型明显变缓,在3个月预见期时NSE仍能保持在0.84~0.95之间。VMD-LSTM模型是月径流预测的一种有效方法,结果可为研究区月径流预测提供参考。