提出一种多目标优化、误差修正的短期风速混合预测模型。首先对原始风速数据进行分解,降低序列的非线性,利用一种有效的多目标优化算法优化ELM神经网络,保证预测精度和稳定性。最后采用深度学习网络LSTM对初始预测结果进行误差校正,为克服超参数选取困难,利用乌鸦算法对层神经元数量进行优化。以中国华中某风电场实际数据为例进行分析,结果表明该方法具有较高的预测精度。