摘要

针对瞬间大电流充放电使电池非线性加剧,使用迭代扩展卡尔曼滤波算法(IEKF)估算电池荷电状态(SOC)时会有较大误差。为了减小误差,进一步提高SOC的估算精度,提出一种基于锂电池复合电化学模型的融合RTS最优平滑的迭代扩展卡尔曼粒子滤波算法(RTS-IEKPF)。该方法利用RTS(Rauch-Tung-Streibel)最优平滑算法与IEKF算法结合生成粒子滤波的建议分布,得到RTS-IEKPF,并用该方法来估算锂电池的SOC。实验结果表明,RTS-IEKPF算法SOC的估算精度优于PF,IEKF和IEKPF算法SOC的估算精度。

全文