摘要

图像的无监督聚类就是基于图像数据,在无任何先验信息的情况下将整个图像集合划分成若干子集的过程。由于图像的本征维度很高,在图像处理中会遇到"维数灾难"问题。针对图像无监督聚类的特点,提出了一种图像的扩散界面无监督聚类算法,将图像编码成高维观测空间中的点,再通过投影变换映射到低维特征空间,在低维特征空间中构建扩散界面无监督聚类模型,并在模型中引入维度约简算子,采用循环迭代算法优化扩散界面模型的能量函数。基于最优的扩散界面,将整个图像集合聚类成不同的子集。实验结果表明,扩散界面无监督聚类算法优于传统聚类算法中的K-means算法、DBSCAN算法和Spectral Clustering算法,能够更好地实现图像的无监督聚类,在相同条件下具有更高的准确度。