摘要
核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组合核函数的邻域保持嵌入(CKNPE)算法。该算法在注重数据局部学习能力的同时增强了外推、预测能力,更多地保留了原始数据的特征信息。通过田纳西—伊斯曼(TE)仿真实验,与CKPCA、CMKPCA算法进行横向比较,并与NPE、KNPE算法进行纵向比较,证明了CKNPE算法对非线性故障检测的优越性。
- 单位