摘要
超声引导穿刺手术过程中,准确判断穿刺针的位置是保证手术成功的重要环节之一。针对目前穿刺针检测方法存在的精度、时效性以及鲁棒性差等问题,文中提出一种基于深度学习的穿刺针检测方法。该方法采用YOLOv5s作为穿刺针的目标检测模型,将随机梯度下降(SGD)作为模型优化算法,利用本地穿刺影像数据集对网络模型进行训练,并对所提方法的有效性进行实验对比验证。结果表明,所提方法可以实现针体和针头的实时检测且鲁棒性较好,检测精度达到97%,检测速度为129 f/s,可以有效辅助医生判断穿刺针在超声影像中的位置,提高手术的成功率和效率。
-
单位青岛科技大学; 电子工程学院