摘要

本文研究了数值求解非自治随机微分方程的正则Euler-Maruyama分裂(CEMS)方法,该方程的漂移项系数带有刚性且允许超线性增长,扩散项系数满足全局Lipschitz条件.首先,证明了CEMS方法的强收敛性及收敛速度.其次,证明了在适当条件下CEMS方法是均方稳定的.进一步,利用离散半鞅收敛定理,研究了CEMS方法的几乎必然指数稳定性.结果表明,CEMS方法在漂移系数的刚性部分满足单边Lipschitz条件下可保持几乎必然指数稳定性.最后通过数值实验,检验了CEMS方法的有效性并证实了我们的理论结果.