摘要
基于卷积神经网络的语义分割模型易存在提取特征不充分、上采样恢复原图尺寸时丢失细节等问题,导致分割精度降低。对比提出一种基于全卷积网络DeepLab v3的改进算法。采用LeakyReLU激活函数,增强网络提取较弱特征的能力;输入图像在多孔空间金字塔池化(ASPP)后,使用密集上采样卷积(DUC)恢复与原图尺寸一致的预测图;在训练时使用Nadam优化器,提高网络的收敛速度和鲁棒性。在PASCAL VOC 2012数据集上进行了验证与评测,结果表明算法平均交并比(mIoU)相比于原算法提高0.6%。
-
单位电子工程学院; 天津理工大学