摘要

深度图与相机位姿参数是图像三维场景重建的重要数据,使用两个卷积网络分别预测,不仅效率低并且切断了二者之间的联系。对此提出一种联合预测深度图与相机位姿的卷积神经网络,输入单幅RGB图像,经过共享编码器编码,经两路子网络分别解码输出深度图与相机位姿参数,其中位姿预测子网络也为双路结构,将位置与姿态参数分离,避免两类参数的串扰。该网络的多任务结构通过信息共享可提升预测精度和效率。实验验证了该方法的可行性与优异性。