新型冠状病毒肺炎以其高传染性和高致病性成为全球关注的问题之一.有效预测COVID-19的累计确诊人数对COVID-19的防控具有重要价值.本文提出加权平均樽海鞘群算法(AVSSA),通过23个基准函数验证了AVSSA的有效性,进而利用AVSSA优化BP神经网络建立预测模型AVSSA-BP,实现COVID-19的预测.实验结果表明预测模型AVSSA-BP有最小的误差和最高的确定性系数,验证了AVSSA-BP的有效性.