摘要

火炮初速决定着在复杂战场环境中能否准确打击敌人,而准确预测出火炮初速关系到在不经试射的情况下能否成功命中目标。预测火炮初速往往采用某种单一模型,虽然建模简单但是只能提取出火炮初速中的某一特征,从而导致预测精度并不理想。针对这种情况,选取了某型火炮3组不同的初速数据进行分析,提出利用ARIMA时间序列模型、GM(1,1)灰色模型及BP神经网络模型进行预测,既能提取出火炮初速中的线性成分又能提取出非线性成分,同时为了最大限度发挥出单一模型的预测优势,利用3个单一模型建立了组合模型,并利用实测数据对各个模型预测精度进行了检验。结果表明,组合模型能更好地发挥出所有模型的预测优势,预测的精度更高,更适合...

  • 单位
    中国人民解放军63850部队