摘要

立体匹配算法在图像弱纹理区和重复纹理区存在匹配困难、误差大的问题,为此提出一种基于改进代价计算和视差候选策略的立体匹配算法。首先结合改进的Census变换和自适应加权融合的双向梯度信息来计算初始匹配代价,提高代价计算的可靠性。其中:为传统Census变换增加内圈编码,提高邻域信息利用率,同时降低噪声的影响;利用自适应权重函数融合横向和纵向梯度代价,降低物体边缘区域的误匹配率。其次,采用自适应十字交叉窗口进行代价聚合,并通过建立候选视差集和引入邻域视差信息的方法来获取初始视差。最后通过两轮插值策略优化视差。实验结果表明,所提算法能够提高弱纹理区和重复纹理区的匹配效果,在Middlebury中4幅标准立体图像对的平均误匹配率为5.33%。