摘要
可视化图像关键特征区域是计算机视觉一个重要而需要深入研究的问题.图像关键特征区域可视化的技术已经在弱监督定位和理解数据隐藏特征的领域中得到广泛应用.近年来,基于神经网络分类器的特征定位显示已成为最新的技术,并且通常用于医学和自然图像数据集上.但存在特征定位显示不精确的缺陷.针对传统神经网络分类器在可视化图像关键特征区域标注方法上的局限性,提出了一种基于生成对抗对特征的关键特征区域可视化方法(即视觉特征归因方法).该方法通过构造关键特征区域对抗对,采用生成和鉴别对抗网络生成关键特征区域,可有效过滤冗余信息并实现精准定位,有效解决了疾病特征可视化问题.在该方法中,为了解决传统生成对抗网络难以达到负载均衡的缺陷,采用了Wasserstein距离解决协调其训练平衡的问题,同时使用梯度惩罚加速收敛过程.在人工合成数据集、肺部数据集和心脏数据集上的实验结果表明,提出的方法在视觉显示的定性和定量的问题中,均产生了理想的真实效果图,非常接近观察到的效果.
- 单位