摘要

针对大数据时代下Slope One算法推荐效率不高的问题,提出结合聚类和动态K近邻的双极Slope One推荐算法.首先,结合Canopy和K-medoids的聚类算法把相似的用户汇聚到一起.然后,在所属聚类中,根据用户之间相似度的具体情况动态地寻找最近邻,并用Slope One-BI算法推荐预测.最后,在Spark平台上实现并行化.在电影数据集上的实验结果表明:基于Spark平台的优化算法与其他协同过滤算法相比,推荐精度具有明显优势.