摘要

为适应产能输出、运营效益等电力数据预测应用,文中提出一种快速双非凸回归(double nonconvex regression,DNR)预测算法。首先,将经典稀疏编码分类技术解释为预测回归模型,并划分为训练阶段和测试阶段,使之适合标量预测应用;其次,针对经典Lasso模型存在的稀疏性不足以及噪声拟合单一问题,该算法通过lp范数约束逼近原始稀疏编码问题的误差重构项和系数正则项,具有更为灵活的模型形式和应用范围。最后,通过交替方向乘子框架实现了重构系数的优化升级策略。为确保ADMM优化子问题具有快速解,提出一种改进的迭代阈值规则用于更新非凸lp约束项,解决了原始算法陷入的局部最优问题。在电力企业实际运行产出和运营指标数据上的实验结果表明,DNR在预测效果和预测效率上均优于经典的支持向量机、BP神经网络以及非凸约束预测方法。

  • 单位
    国网浙江省电力公司; 国网浙江省电力公司经济技术研究院