摘要
针对现有的三维分割方法在挖掘点云特征时,会忽略几何特征有效利用的问题,提出双边特征和相似度量的点云实例分割网络3D-BSNet(3D-bilateral feature and similarity measure network)。该网络主要由双边特征学习和轻量级相似度量两部分组成。首先提出一种包含基于子流形稀疏卷积的3D-UNet和多层感知机的双边特征提取模块,用于提取经过体素化处理的点云数据的语义特征和几何特征;然后设计一种结合通道维度和空间维度的双边注意力机制,用于减少双边特征聚合过程中产生的信息损失;最后开发一种轻量级相似度量模块,获取高维嵌入特征空间中邻近点云之间的相似性,并生成细粒度实例分割结果。实验表明,3D-BSNet在S3DIS和Scannet(v2)数据集上的多指标综合表现优越,其中在Scannet(v2)上的平均精确率比SSTNet提高了3.3%,有效提高了室内场景三维实例分割的精度。
- 单位